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Multiband superconductivity, involving resonant pair scattering between different bands, has emerged as a
possible explanation of some of the main characteristics of the recently discovered iron pnictides. A key feature
of such interband pairing mechanism is that it can generate or enhance superconductivity irrespective of
whether it is attractive or repulsive. The latter case typically leads to the superconducting gap switching its sign
among different sections of the Fermi surface. In iron pnictides, the natural scenario is that the gap changes
sign between the hole and the electron Fermi surfaces. However, the macroscopic symmetry of such an
extended s�-wave state still belongs to the general s-wave category, raising the question of how to distinguish
it from an ordinary s wave. In such a quest, it is essential to use experimental techniques that have a momentum
space resolution and can probe momenta of order �� ,��: the wave vector that separates the hole and the
electron Fermi surfaces in the Brillouin zone. Here we study experimental signatures in the spin fluctuation
dynamics of the fully gapped s- and s�-wave superconducting states, as well as those of the nodal d and p wave
states. The coupling between spin fluctuations of the incipient nearly nested spin-density wave �SDW� and the
Bogoliubov-de Gennes quasiparticles of the superconducting state leads to the Landau-type damping of the
former. The intrinsic structure of the superconducting gap leaves a distinctive signature in the form of this
damping, allowing it to be used to diagnose the nature of iron-based superconductivity in neutron scattering
and other experiments sensitive to spin fluctuations in momentum space. We also discuss the coexistence
between superconductivity and SDW order.
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I. INTRODUCTION

Recent discovery of a new high-temperature supercon-
ducting �SC� family1–9 has generated a flurry of excitement.
Many of the key questions both theoretical and experimental
remain unanswered. However, it is becoming rapidly clear
that the resemblance to the high-Tc cuprates is less straight-
forward and that a new superconducting mechanism might
be at play.

Variety of order parameters and pairing mechanisms has
been suggested. Phonon interaction alone seems too weak to
explain the high Tc. In several theoretical papers10–13 the
multiband superconductivity is discussed as a possible expla-
nation for the high Tc. Indeed, it has been long known14 that
multiband effects can strongly enhance superconductivity.
This is particularly relevant in the case of iron pnictides,
which appear to be moderately correlated electron systems,
with large number of Fe d bands at and near the Fermi level.
Another advantage of this mechanism is that the interband
pair interaction can enhance superconductivity irrespective
of whether it is attractive or repulsive provided that the gaps
in different bands have the same or opposite signs, respec-
tively. The former is the familiar s wave while the latter is
the extended s-wave superconductivity or s�. This s� state,
with the superconducting gap having the opposite sign on
hole and electron sections of the Fermi surface �FS�, emerges
as a natural explanation for the superconductivity in Fe-
based compounds given the proximity of these materials to
various nesting-driven spin-density-wave �SDW� and related
instabilities and absence of obvious strong attractive interac-
tion.

The early point-contact Andreev reflection experiments
indeed indicated a fully gapped superconductor15,16 with no

indication of cupratelike nodes consistent with this s�
picture provided that the hole and electron gaps are of a
similar magnitude. The subsequent microwave17 and angle
resolved photoemission spectroscopy �ARPES� �Refs. 18 and
19� experiments further fortified the case for s or s� state also
finding the fully gapped superconductor with, in some in-
stances, different gaps for the hole and the electron portions
of the FS. In contrast, the nuclear magnetic resonance
�NMR� results are most naturally interpreted in terms of a
d- or p-wave nodal state.20

This state of affairs underscores the urgency of settling
the issue of the gap structure by additional experimentation.
Very recently, several papers13,21–23 elaborated different pos-
sible experimental signatures of the s� superconductivity as
well as some other forms of superconducting order, particu-
larly in the NMR experiments. However, in view of the com-
plexity of these materials and still relatively poor quality of
the samples, it is unlikely that a single experiment is going to
settle this issue unequivocally. More importantly, the s� state
is in the same symmetry class as the standard s wave and
there is in principle no macroscopic experiment analogous to
the phase-sensitive measurements in cuprates,24 which can
distinguish the two in a decisive qualitative fashion. Instead,
the key difference between the s�- and the s-wave states is in
the momentum space not the real space and thus one should
concentrate on experiments that have the momentum space
resolution and can probe the wave vectors around �� ,��,
which separates the hole ��� and the electron �M� FS in the
Brillouin zone.

To this end and to further expand the range of the experi-
mental techniques that can be used in this regard, in this
paper we consider the spin fluctuations dynamics in the su-
perconducting state of iron pnictides. We assume that the

PHYSICAL REVIEW B 78, 184509 �2008�

1098-0121/2008/78�18�/184509�10� ©2008 The American Physical Society184509-1

http://dx.doi.org/10.1103/PhysRevB.78.184509


system is close to a nesting-driven SDW instability and com-
pare different contributions to the damping of spin fluctua-
tions arising from the Bogoliubov-de Gennes �BdG� quasi-
particle excitations in superconductors with s- and s�-wave
gaps. For completeness, we also consider the case with nodal
p- and d-wave symmetries of the gap function.25 This prob-
lem is the superconducting state analog of the Landau damp-
ing in Fermi liquids. We find that the damping is qualita-
tively different in all of the above cases and thus can be used
to diagnose the intrinsic microscopic nature of the supercon-
ducting order. We also consider the situation in which the
ordered SDW/AF state coexists with a superconductor. This
coexistence is observed in at least two of the compounds8,9

and can be induced by pressure or doping.

II. PRELIMINARIES AND THE MODEL

The parent compound of the 1111 class of Fe-based su-
perconductors has a ZrCuSiAs-type crystal structure26 with
eight atoms per unit cell. The Fe atoms lie in a plane, same
as O atoms precisely above them, in the adjacent rare-earth
�RE� oxide layer. In contrast, the RE and As atoms �also
located above each other� are puckered out of plane in a
checkerboard fashion. This puckering of As atoms is crucial
for understanding the electronic structure of the
compounds.11 It brings all Fe d orbitals close to the Fermi
level and creates significant overlap among Fe and As atomic
orbitals. The result is a rich band structure. There are five
bands crossing Fermi surface: two electron cylinders around
M point and two hole cylinders plus a hole pocket around �
point.10,27,28 The three-dimensional �3D� hole pocket is
quickly filled with doping and is believed to be irrelevant to
both antiferromagnetism and superconductivity. The remain-
ing two hole and two electron bands are almost cylindrical
and exhibit significant degree of nesting. The natural Fe
magnetism due to the Hund’s rule is suppressed and one is
left with a weaker itinerant �antiferro�magnetism, sensitive to
the nesting features in the band structure and associated with
moderately strong correlations.11

The outlines of the generic phase diagram of iron pnic-
tides have began to emerge:9,29–31 At zero and moderate dop-
ing and zero temperature there is structural distortion and
antiferromagnetic order which disappear at some higher tem-
perature. This critical temperature is strongly suppressed by
doping; at some critical doping structural distortion and an-
tiferromagnetism suddenly give way to superconductivity.
After this point, further increase in the doping level produces
relatively small changes and the superconducting Tc is rather
flat. In addition, SmO1−xFxFeAs and Ba1−xKxFe2As2 have a
sizable region of coexistence of antiferromagnetism �SDW�
and superconductivity.

An emerging consensus is that antiferromagnetism is due
to the nesting between the hole and the electron bands. The
result is the SDW formed by itinerant electrons. After
particle-hole transformation, the SDW instability is math-
ematically equivalent to the BCS one caused by a logarith-
mic divergence.11 Away from perfect nesting this divergence
is replaced with a finite peak and sufficiently far away there
is no instability for weak interactions. Because of proximity

to such instability, however, there are enhanced spin fluctua-
tions in the system. This fluctuations couple to the Fermi-
liquid quasiparticles and can decay into an electron-hole pair,
which leads to a Landau-type damping. In the antiferromag-
netically ordered state with localized spins or in a perfectly
nested SDW one expects an insulating behavior. Instead, the
experiments show a drop in the resistivity at the SDW tran-
sition point followed by the metallic behavior.32 This obvi-
ously implies high degree of itinerancy and indicates that the
Fermi surface is only partially gapped or that the Fermi level
is located entirely outside the SDW gap. In the presence of
the SDW order, the collective excitations of the SDW order
parameter �spin waves� can interact with the quasiparticles
on the Fermi surface, thus inducing a Landau-type damping
of the former. Similarly, in the vicinity of the SDW state,
when the true long-range order is absent but the correlation
length is very large, the spin fluctuations—the incipient spin
waves of the SDW—are also damped by the aforementioned
decay into the particle-hole continuum. When the system un-
dergoes the superconducting transition, this particle-hole
continuum at the Fermi level is gapped by the superconduct-
ing order. Consequently, the new fermions—the BdG
quasiparticles—are far less effective in damping the spin
fluctuations and the decay rate vanishes as the temperature
goes to zero. This decay rate of spin fluctuations carries a
distinct signature of the structure of the superconducting gap
in momentum space and the associated BCS coherence fac-
tors.

For the purposes of this paper we adopt the following
simple yet sufficiently realistic model depicted in Fig. 1. We
assume that the electron spectrum is described by two differ-
ent bands: a hole �c� band at � point and an electron �d� band

at the M� = �� ,�� point with the same effective mass m. This
is an approximation to be sure but a sensible one since the
two hole and two electron bands at the FS of real Fe pnic-
tides resemble each other to a reasonable degree. In fact, Fe
pnictides are really semimetals, in the following sense: Con-
sider two bands

�p�
c = �c + tc cos�pxa� + tc cos�pya�

�p�
d = �d + td cos�pxa� + td cos�pya� �1�

and imagine the situation where �d−�c� tc , td and we have
two electrons per unit cell, mimicking the six d electrons of

�

�

FIG. 1. An illustration of our model: a hole band �c� centered at
the � point and an electron band �d� centered at the M = �� ,�� point
interact via a short-range interaction U.
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the Fe-pnictides parent compounds. The chemical potential is
in the gap between the c �full� and d �empty� bands and the
system is an insulator. Now, as the difference �d−�c is gradu-
ally reduced while the electron number remains unchanged,
the bottom of the d band at the corner M of the Brillouin
zone �BZ� moves below the top of the c band at its center �.
The electrons filling the top of c now migrate to the bottom
of d leaving the holes in c behind, thereby creating the FS
shown in Fig. 1. The density of electrons filling the bottom
of d is precisely equal to the density of holes in c band,
hence the semimetal label for the parent compounds. Of
course, the situation in real materials is not as simple as Eq.
�1�; there are four not two bands and they are far from being
simple since their orbital content changes considerably as
one goes around the FS.11 These complexities notwithstand-
ing, the above simple picture �Fig. 1 and Eq. �1�� with tc
� td will suffice for the purposes of this paper.

The relevant interband interaction is assumed to be the
short-ranged Hubbard U. Thus, the action and the Hamil-
tonian can be written as

S0 =� d�ddr�c̄��� − ��c + Ĥc + d̄��� − ��d + Ĥd�

Sint = U� d�ddrc̄ c d̄ d

Ĥc = �
p�

�p�
cc̄p�cp� = �

p�
��F −

p�2

2m
	c̄p�cp�

Ĥd = �
p�

�p�
dd̄p�dp� = �

p�

�− �F +
�p� − M� �2

2m
	d̄p�dp� , �2�

where we have expanded c�d� band �1� near the top �bottom�.
We can now shift the electron band to the � point and call
this “new” electron band e. One should, however, always
keep in mind that the two bands are shifted relative to each

other in momentum space by M� = �� ,�� �Fig. 1�.
First, we consider the case of perfect nesting �=0 and

compute the damping term for the spin fluctuations given by
the imaginary part of the electronic-spin susceptibility

��q� + M� ,	� = �
p�

f��p�+q�
c � − f��p�

e�

	 − ��p�+q�
c − �p�

e� + i0+

which results in

Im ��q� + M� ,	� 

	

vFq
, �3�

having the familiar Landau damping form.
Next, we consider a more realistic case and assume that

two bands are mismatched; their centers do not coincide—
one being shifted by �k�F—and furthermore their radii differ
by 2�, as illustrated in Fig. 2. These two quantities �k�F and
� parametrize deviations from perfect nesting within our
model. The spectrum of the two bands is

�p
c = �F −

p�2

2m
− �

�p
e = − �F +

�p� + �k�F�2

2m
− � .

Notice that the damping term is nonzero only if the two
Fermi surfaces touch or intersect each other, otherwise it is
impossible to excite an electron-hole pair with a low-energy

fluctuation and momentum close to M� . When the two Fermi
surfaces have two different intersection points, the damping
term is proportional to 	,

	


�P0��kF�
2m

	2

− �2

, �4�

where P0
2=2m�F− ���kF� /2�2.

When the two bands are touching each other at a point on
the Fermi surface, ��kF�=
2m��F+��−
2m��F−��. For
���F but still finite, the low-frequency damping term is

Im ��q� + M� ,	� 

	

2�
. �5�

III. SPIN FLUCTUATIONS IN A SUPERCONDUCTING
STATE

Once our system enters the superconducting state, the
damping changes and becomes temperature dependent re-
flecting the opening of the superconducting gap.33 After the
diagonalization of the BSC Hamiltonian the new quasiparti-
cle excitations become a mixture of electron and hole states.
The coupling of the spin fluctuations to this new
excitations—the BdG quasiparticles—is determined by the
BCS coherence factors.34 These factors arise from rewriting
the interaction part of the Hamiltonian in terms of the BdG
operators. There are two general types of coherence factors,
case I and case II, for perturbations even or odd under time
reversal of the electronic states. Furthermore, there are dif-
ferent factors for processes of scattering or creation and an-
nihilation of quasiparticles. The latter, however, requires an

�

�

�

�

�

FIG. 2. Fermi surfaces of inequivalent hole and electron bands.
Their centers are displaced by the vector �k�F defined in the text.
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energy of at least 2� and we will neglect them since they do
not contribute to the low-energy physics. We are interested in
processes with spin flip, so the correct coherence factor to
use is the one for scattering of BdG quasiparticles, case II, or
explicitly up�up�+q�� +vp�vp�+q�� . This coherence factor, however,
has a different form for different forms of the microscopic
superconducting order parameter—the BdG gap function—
and therein lies the possibility for diagnosing the intrinsic
nature of the superconducting state.35

Again, we first consider the case of perfect nesting be-
tween the hole and the electron band�s� or, replacing u’s and
v’s,

1

2�1 +
�p�

c�p�+q�
e + �c�e

Ep�
cEp�+q�

e 	 , �6�

where Ep�
c =
��p�

c�2+ ��c�2 and Ep�
e =
��p�

e�2+ ��e�2. Since our

focus is on spin fluctuations with momenta around M�

= �� ,��, we are justified in dropping the intraband terms.
The electron susceptibility then can be written as

��q� + M� ,	� = �
p�

1

2�1 +
�p�

c�p�+q�
e + �p�

c�p�+q�
e

Ep�
cEp�+q�

e 	


f�Ep�+q�
c � − f�Ep�

e�

	 − �Ep�+q�
c − Ep�

e� + i0+
�7�

where q�M. Extracting the imaginary part gives the general
expression for damping of spin fluctuations at this momen-
tum by the BdG particle-hole excitations

Im ��M� + q� ,	� = �
p�

�

2 �1 +
�p�

c�p�+q�
e + �p�

c�p�+q�
e

Ep�
cEp�+q�

e 	
�f�Ep�+q�� − f�Ep�����	 − �Ep�+q� − Ep��� .

�8�

First we consider the s� case. Because of �p�
c =−�p�+q�

e �s�
implies the repulsive pairing term� the coherence
factor is strongly suppressed Ep�Ep�+q� +�p�

c�p�+q�
e −�p��p�+q�

� 1
2 �vFq cos ��2�1+ �

�p�

Ep�
�2�� after expansion in the powers in

q �we have dropped the band indices for the moment and put
�p�

e ��p��. The argument of the � function in Eq. �8� becomes

�using Ep�+q� −Ep� �
�p�vFq cos �

Ep�
for small q� �	−

�p�vFq cos �

Ep�
,

where cos � has to be positive for �p�
c. We can now use �p�

=
Ep�
2 −�p�

2 to solve for Ep� �E,

��	 − �Ep�+q� − Ep��� =
1

vFq cos �

E2
E2 − �2

�2 ��E −
�


1 − x2	 ,

where x= 	
vFq cos � is obviously smaller than unity; we will

assume the condition 	
vFq �1 as usual. The occupation num-

ber factor in Eq. �8�, f�Ep�+q��− f�Ep��, can be written as
f�Ep� +	�− f�Ep���	

�f�E�
�E . We then convert the p integration

into E integration with density of states �DOS� E

E2−�2 and

perform the integral over the � function. This leaves us with
the angular integration

�
−�/2+	/vFq

�/2−	/vFq

�vFq cos ���−
2E2 − �2

E�2 	�	
� f�E�

�E
	dE

= �
−�/2+	/vFq

�/2−	/vFq

�vFq cos ��
�1 + x2�

1 − x2�

	
� f�E�

�E
dE , �9�

where �f�E�
�E is evaluated at E= �


1−x2 . This integral is nontrivial
and to perform it we have to use 	 /vFq�1. Despite the

1−x2 in the denominator the integrand is rapidly sup-
pressed in the limit x→1 because of the exponential factor
hiding in �f�E�

�E . It is straightforward to check that the first
derivative at �=0 vanishes and that the integrand has a maxi-
mum there. Because of the rapid decrease away from this
point, we can estimate the integral with the familiar formula
I�y�0�
 y�0�

�y��0�� , where y�cos �� is the integrand. Working to
the lowest order in 	

vFq we finally obtain

Im �s��q� ,	� 
 	�vFq�
e�/T

�e�/T + 1�2T
. �10�

This expression gives the interband contribution to the
damping of an incipient fluctuating spin wave in an s�-wave
superconductor.

It is instructive to contrast the above result with the stan-
dard s-wave case. After performing the analogous calculation
for the case of a pure s-wave superconductor, the coherence
factor for the superconductor is found to have a constant
term � �2

E2 . Keeping only this term and going through the
same steps as before yields

Im �s�q� ,	� 

	

vFq

e�/T

�e�/T + 1�2T
. �11�

Clearly, the dynamical properties of spin fluctuations in s and
s� superconducting phase are very different: The damping
and thus the decay rate of incipient spin waves in the s� state
is substantially reduced relative to the standard s-wave case,
by the overall factor of q2 �note that q� is measured relative to

M� �. These differences and the specific forms of damping
should be observable in neutron scattering or other
momentum-resolved probes of spin fluctuations.

For completeness, we now consider the nodal d- and
p-wave superconductors, another possible contender for the
superconducting state of iron pnictides favored by the NMR
experiments.20 In this case, the main contribution to the low-
temperature damping comes from the nodal regions. The
natural excitations of the system in these regions are Dirac
fermions with linear dispersion vF�p�, which can be seen by
expanding the BdG Hamiltonian near the nodes.36 We will
ignore the intrinsic anisotropy of the BdG-Dirac spectrum
since we do not expect it to change the overall form of the
damping term. The coherence factors for the individual
nodes differ for the intraband and interband processes, but
we need to add all the nodal contributions. The combined
coherence factors are equal to the lowest order �up to a nu-
merical prefactor�. First, we assume the pxpy d-wave order

parameter �dxy�, which means that the direction of M� and the
nodal directions are rotated by n� /4 �where n is integer�
with respect to each other. We expand around that nodes and
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do the momentum integral first, using the � function,

	� ��	 − Ep+q + Ep�
� f���

��
EdE ,

where now E=vF

px

2+ py
2 is the linear dispersion of the Dirac

quasiparticles. The integrand in the remaining angular inte-
gral is confined in the region �� �� /2,3� /2� and is peaked

around �=�. We again use the formula I�y�0�
 y�0�
�y��0�� to

estimate the lowest-order contribution. This gives the final
low-temperature limit result

Im �dxy�q� ,	� 
 	
qx
2 + qy

2 1

T cosh2 �q�
T

. �12�

The reason for this particular temperature dependence is the
fact that we have restricted ourselves to the region 	�vFq.
Integrating this expression over q we can obtain the standard
result for the NMR damping rate 1 / �T1T�
T2.

The other possibility for a d-wave order parameter is a

dx2−y2. In this case the nodal directions are along M� or per-
pendicular to it. To the lowest order the damping in this case
has the same form as in the dxy case, so the position of the

nodes with respect to M� is irrelevant. We emphasize that this
is only the lowest-order result, so in general some distinction
between the dxy and dx2−y2 cases is expected.

Now let us consider a p-wave superconductor with two
nodes along x direction. Combining the coherence factors for
the nodes gives an additional factor of sin2 � compared to the
dxy case. We again use the � function to do the momentum
integral first. After that the integrand is confined in the
�� /2,3� /2� interval but now goes to zero at �=�. Nonethe-
less, we can still estimate the integral and the leading term
behavior is the same as in the dxy case �with a different
numerical prefactor�

Im �px�q� ,	� 
 	
qx
2 + qy

2 1

T cosh2 �q�
T

. �13�

We obtain the same result for a p-wave superconductor with

nodes along the M� direction.
A multigap nodal superconductor can also be an extended

d and p wave, with sign change between the gaps on the
disconnected parts of the Fermi surface: a d� or p� state. The
lowest-order term in the coherence factor is then proportional
to q2, as in the case of s� superconductor, and the damping in
d� and p� states is strongly suppressed compared to the pure
d and p waves. We see that momentum-resolved measure-
ments can distinguish the p- and d-wave superconductor
from the s and s� case. This comes in addition to the signifi-
cant differences in their temperature behavior.

Perfectly nested bands generate strong spin- and charge-
density-wave �CDW� instabilities. It is believed that super-
conductivity appears with doping or by application of pres-
sure, away from the perfect nesting, once the ordering in the
particle-hole channel is suppressed. Thus, we now turn to the
case of imperfect nesting. To this end, we again consider the

two bands—a hole and an electron one illustrated in Fig. 2.
We also assume that the deviation from perfect nesting is
small and �kF is of the order of q and smaller that � /vF.
Now expanding the coherence factor in the s� case gives us
1
2 �2�+ p� · �q� +�k�F� /m�2�1+ �

�p

Ep
�2�. Repeating the same steps

as before we obtain the damping,

Im �s��q� ,	� 
 	�2� + vF�q� + �k�F��


2� + vF�q� + �k�F�

vF�q� + �k�F�

e�/T

�e�/T + 1�2T
.

�14�

For the s-wave superconductor coherence factor we again
keep only �2 term and the result is

Im �s�q� ,	� 

	

2� + vF�q� + �k�F�


2� + vF�q� + �k�F�

vF�q� + �k�F�

e�/T

�e�/T + 1�2T
.

�15�

Both results reduce correctly to the perfect nesting case
��→0,�kF→0� but generally have more complicated be-
havior. Increasing the mismatch of the two bands drives the
damping to the same form const	 in both cases, albeit
with different constants.

In the case of d- and p-wave superconductors, the imper-
fect nesting of this type leads to a rather complicated behav-
ior. The point where the two Fermi surfaces touch �Fig. 2� is
special and its position with respect to the nodes determines
the low-energy low-temperature response. If there is a node
in a close vicinity of this point of contact between two Fermi
surfaces, the behavior of the system is somewhat similar to a

perfectly nested single node case, but with M� replaced by

M� +�k�F. If this point is in one of the antinodal regions the
response resembles the one found in the s-wave case.

We pause here to emphasize again that the expressions for
damping of spin fluctuations presented above—and similar

other physical quantities—at a specific momentum around M�

are better suited to distinguish between different microscopic
order parameters and their associate BdG gap functions. In
contrast, the NMR relaxation rate is an integral quantity and
thus always includes both the interband and the intraband
contributions. Extracting one of them is thus a rather chal-
lenging task. For example, even in the s� case, the Hebel-
Slichter peak is expected to occur23 due to the intraband
�pure s� processes.

IV. COEXISTENCE OF SUPERCONDUCTIVITY AND SDW

We now consider the combination of SDW and supercon-
ducting orders. We will assume that the main SDW �particle-
hole� gap opens below the Fermi level, so the system re-
mains metallic, as it appears to be the case experimentally.32

This is depicted in Fig. 3 and it emulates the situation in real
Fe pnictides, where the mismatch among hole and electron
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pockets results in reconstruction instead of complete disap-
pearance of the Fermi surface.11,37 Then—on top of this
SDW—either attractive or sufficiently strongly repulsive in-
terband interaction generates at some lower temperature a
new superconducting �particle-particle� gap; this time lo-
cated precisely on the Fermi surface �see Fig. 3�. The ques-
tion is whether spin-waves dynamics can be used as a probe
of the microscopic structure of the superconducting order
parameter in this case as well.

The magnon�spin-wave� dispersion relation is given by
the inverse of the transverse magnetic susceptibility �+− and
is 	2−c2q2 at the bare level, where c is the spin-wave veloc-
ity. Damping will be introduced by including magnonelec-
tron interactions as before.33 Here we neglect contributions
from impurities and higher-order magnonmagnon interac-
tions; these are generally present but can be distinguished
from the itinerant particle-hole damping by their different
and lesser sensitivity to the opening of the superconducting
gap. Then the imaginary part of the electron-spin suscepti-
bility � determines the decay rate of magnons. In the SDW-
only phase we have to rewrite the electron operators as a
superposition of the new eigenstates, which diagonalize the
broken-symmetry Hamiltonian. This leads to the appearance
of new coherence factors, reflecting the SDW order in the
particle-hole channel.38 They are similar but different from
the BSC case, since the new quasiparticles are now mixture
of particle or hole operators from different bands. We will
consider processes of scattering of quasiparticles in the new
upper band and neglect all others for a reason explained
shortly. The correct case II coherence factor to use then is
up�up�+q�� −vp�vp�+q�� equal to

1

2
�1 −

�p��p�+q� + �0
2

�p��p�+q�
	 , �16�

where �p� = p2 /2m−�F and �p� =
�p�
2 +�0

2, with �0 being the
SDW order parameter.

In the presence of the SDW, the unit cell doubles and M�

becomes a vector of the reciprocal lattice. We can picture the
new band structure with two bands at the same position in

momentum space, with avoided crossing where the SDW
gap opens. What was previously a holelike �electronlike�
band now has an electronlike �holelike� part as well.

One important point should be discussed here. To have
metallic behavior and superconductivity on the top of SDW
we have to introduce the nonzero chemical potential for the
new �gapped� band structure. This, however, cannot be done
cavalierly since the model will not be self-consistent. That is
the consequence of the fact that within the simple model
adopted in this paper, a gap on the Fermi surface is typically
energetically preferable to a gap below or above. To remedy
this and stabilize the SDW gap below the Fermi surface, we
have to include new terms in our Hamiltonian, reflecting
deviations from idealized bands and the lattice effects in real
iron pnictides. This, unfortunately, comes at the cost of sig-
nificantly more complicated calculations and an entirely ob-
scured physical picture. For the purposes of this paper, this is
too great a cost and we avoid it by using the following ap-
proach: We calculate the SDW wave coherence factors at
zero chemical potential, when Fermi surface is completely
gapped. Next, in order to account for the metallic behavior,
we reintroduce a small Fermi surface, which now can un-
dergo a superconducting instability. The physics behind this
approach is clear: The SDW coherence factors determine the
vertices that couple the magnons and the BdG quasiparticles.
The magnons are the Goldstone modes of the SDW and this
coupling should be of a gradient type because of the broken
symmetry of the ordered state—the long-wavelength twist in
the spin direction of the SDW should come at no cost in
energy. This remains true independently of the position of
the SDW gap. Adopting this simplification, the SDW coher-
ence factor of interest �involving quasiparticles from the up-
per band� is just ��vFq cos ��2.

Starting with the case without superconductivity, the
damping is

Im ��q� ,	� �
��0

2

2��2 − �0
2�2

	3

vFq
. �17�

In the case of coexistence we have to calculate anew the
superconducting coherence factor

1

2�1 +
�p��p�+q�� + �p��p�+q��

Ep�Ep�+q��
	 . �18�

In the vicinity of the SDW gap, the new quasiparticles are
almost an equal mixture of the two initial bands c and d.
Turning on the chemical potential moves the Fermi level to
the upper band; as discussed above this is to be done advis-
edly. If the chemical potential is not very small, the content
of the quasiparticles at the new Fermi level will be almost
exclusively from only one of the “old” bands �either purely
an electronlike or a holelike�. With this assumption we cal-
culate the superconducting coherence factors.

Again, we first consider the s� case. Working to lowest
order in 	 /q we get

� � �

�

� �

FIG. 3. Coexistence of SDW and superconductivity in our
model. The chemical potential � is above the SDW gap while the
superconducting gap is always pinned to �.
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Im ��q� ,	� � 	�vFq�3 e�/T

�e�/T + 1�2T
. �19�

This expression gives the interband �mixing the “old” bands�
contribution to the spin-wave damping in an s�-wave super-
conductor. However, here we cannot neglect the intraband

contribution as we did earlier, since now the momenta M� and
zero are effectively equivalent by virtue of the umklapp scat-
tering of the underlying SDW modulation—consequently
both interband and intraband terms are contributing. Calcu-
lating the intraband term gives

Im ��q� ,	� � 	�vFq�
e�/T

�e�/T + 1�2T
. �20�

and we see that the this is in fact the leading term in the limit
of small q, masking the contribution of the interband damp-
ing.

For the case of a pure s-wave superconductor we get

Im ��q� ,	� � 	�vFq�
e�/T

�e�/T + 1�2T
. �21�

The intraband term is of the same order.
Thus, in the region of coexistence, the dynamical proper-

ties of SDW magnons in s and s� superconductors are diffi-

cult to distinguish. The damping at momentum around M� is
due to both interband and intraband scattering and since the

latter are of course unaffected by the relative sign of the
different gaps, it would be difficult to observe any significant
difference in experiments.

Table I summarizes some of our results for the reader’s
convenience. As an illustration of the main results, Fig. 4
shows several contour plots.

V. SIMPLE MODEL OF MULTIBAND
SUPERCONDUCTIVITY

A significant part of our focus in this paper was on an
s�-wave superconductor, in which the Fermi surface of Fig. 1
is fully gapped but the gap function in its hole pocket has the
opposite sign relative to the one in the electron pocket.25

Furthermore, our paper is clearly designed to arouse interest
in the experimental community. Consequently, for the read-
er’s benefit, we consider here a rather basic picture of s�
multiband superconductivity and some of its features appro-
priate for our simplified model of Fe pnictides �for a more
theoretically inclined discussion, the reader is referred to
Ref. 37�. With appropriate modifications, the same consider-
ations can be easily adapted to the d� and p� cases.

First, the model �2� discussed so far is not sufficient. The

interband interaction Uc̄cd̄d will induce the SDW and pro-
mote strong spin fluctuations but will not by itself lead to
superconductivity from purely electronic interactions.37 For
that possibility to enter into play, one must consider the in-
terband pair resonance interactions of the type Jc̄c̄dd+H.c.:

TABLE I. The summary of our results for damping of spin fluctuations by particle-hole excitations in
several different superconducting states. Here �q� =vF�q� +�k�F�.

Pure
SDW s� SC s dx2−y2 px

Perfect nesting
	3

q
	qe−�/T 	

q
e−�/T 	�q�

T cosh2 �q�
T

	�q�

T cosh2 �q�
T

Imperfect nesting 	 �2�+�q��e−�/T	
2�+�q�

�q�

	

�2�+�q��
e−�/T
2�+�q�

�q�

(a) (b) (c)

FIG. 4. Contour plots illustrating Table I, with the temperature fixed to some T�Tc. The damping term in the 	−vFq plane is shown for
perfect nesting—the brighter the shade indicates stronger damping. There is no damping for 	�vFq. The reader should be warned that our
results become less reliable close to this boundary.
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a Josephson-type term in momentum space which scatters
pairs of electrons between c and d bands.13,37 Such terms are
typically present in multiband systems and their size in Fe
pnictides is significant.37

The key feature of this interband interaction J is that it
can drive the system superconducting—or enhance the al-
ready present intraband superconductivity—irrespective of
whether it is attractive or repulsive. In the former case, the
intraband gaps will have the same relative sign while in the
latter, which is probably where the Fe pnictides belong, this
sign will be different. This is the origin of the s� supercon-
ducting state.

In the weak-coupling theory, however, the interband re-
pulsive interaction J can drive the system superconducting
only if it is large enough, i.e., J2�U1U2, where U1 and U2
are the repulsive intraband interactions in the hole �c� and
electron �d� bands. Such a sizable J is not something that is
easily found, since, generically, J is significantly smaller than
the intraband Coulomb repulsion U1 and U2; indeed, this also
appears to be the case in Fe pnictides.37 Here we suggest a
mechanism that could potentially solve this problem. The
interactions that enter the condition for superconductivity are
not the bare Coulomb terms but some appropriately screened
interactions. The screening length is �D=4�e2�0�q�, where
�0�q� is a polarization bubble. The momentum region for the
J pairing term is around M and the main contribution to the
polarization is a mixed bubble. On the other hand the main
region for the U1,2 terms is around zero and the screening is

due mostly to the usual single-band bubbles. �D�M� � has a
rather dramatic evolution with doping11 �in contrast with
�D�0�� and goes to zero for high-doping levels. Let us now
confine ourselves to the region in which the interactions are
frequency independent. This limit is constrained by the time
� it takes an electron to traverse the “Debye” screening
length ��

rD

vF
, where rD= 1

�D
= 1

4�e2�0
�the “Debye” label here

is generic and refers to any significant low-energy bosonic
excitation�. The interaction is frequency independent for
	�

1
� . Outside this region it has complicated frequency de-

pendence and we can set J=0 �as it is done in the extensions
of the BCS theory which include Coulomb interaction, where
J=const for 	�	C and J=0 for 	�	C, where 	C is the

Coulomb frequency cutoff�. For �D�0���D�M� �, the fre-
quency range of J is smaller and this could lead to logarith-
mic suppression of U1,2 akin to the reduction in the Coulomb
pseudopotential caused by phonon retardation effects within
the standard BCS-Eliashberg theory.39 In a nutshell, the pres-
ence of low-lying spin and charge collective modes in the
vicinity of the SDW or CDW ordered state37 will result in a
dynamical renormalization of the intraband repulsion and the
“Josephson” interband term which is generically different for
the two given that they are associated with very different
sectors of momentum space �kF versus M�.39 Such low-lying
bosonic modes appear to be present in the optical spectros-
copy of Fe pnictides,40 so this mechanism is at least within
the realm of the possible and should be further explored.

We now illustrate the above arguments with an explicit
calculation. In multiband superconductivity there are at least
two gaps which vanish at the same critical temperature �if
there is a nonvanishing pair resonance term J�. We can write

down the equations determining the zero-temperature gaps
and the critical temperature.14,41 To study the effects of the
retardation we divide the energy range into two intervals:
�� �0,	C1� and �� �	C1 ,	C2�, where 	C1 and 	C2 are the
frequency cutoffs for J and U1,2, respectively. For each band
we define two gaps �i1 and �i2 �i=1,2 is the band index�
corresponding to these two regions. Assuming parabolic
bands as before, the gap equations are

�11 = − �11�1�
0

	C1 tanh��E11/2�
E11

d�

− �21�2�
0

	C1 tanh��E21/2�
E21

d�

− �12�1�
	C1

	C2 tanh��E12/2�
E12

d�

�12 = − �11�1�
0

	C1 tanh��E11/2�
E11

d�

− �12�1�
	C1

	C2 tanh��E12/2�
E12

d� , �22�

where Eki=
�ki
2 +�ki

2 . To simplify the notation we have intro-
duced new variables �1,2=N1,2U1,2 and �1,2=N1,2J, where Ni
is the DOS in band i. Both �i and �i are positive correspond-
ing to repulsive interactions. The above equations are
coupled with the analogous ones for �21 and �22. The inter-
actions J, U1, and U2 appearing here are the angular averages
over the Fermi surface.37

To proceed, we concentrate on the condition for a non-
trivial solution in terms of �ki. This gives an equation for the
integrals I1 and I2 that appear in Eq. �22�,

I1 = �
0

	C1 tanh��E11/2�
E11

d�

I2 = �
	C1

	C2 tanh��E12/2�
E12

d� . �23�

0 0.02 0.04 0.06 0.08 0.1
�N2�N1��N2

0.7

0.8

0.9

1

1.1

1.2

�
1
,

�
2

FIG. 5. The illustration of the relatively mild sensitivity of the
two superconducting gaps to differences in the DOSs between elec-
tron and hole bands ��N2−N2� /N2�. The gaps were computed from
Eq. �22�, without retardation effects, using �1=0.3 and �1=0.5, for
up to 10% difference in DOSs and are measured in units of 10−2	C.
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These integrals are positive definite and close to the criti-
cal temperature can be approximated by I1
=log�1.13	C1 /Tc� and I2=log�	C2 /	C1�. If we now momen-
tarily suspended the above “retardation” effect of J relative
to U1,2 �	C2=	C1� and take the cutoff of the energy integra-
tion to be the same everywhere I2→0 and I1 becomes

I1 =
��1 + �2� + 
��1 − �2�2 + 4�1�2

2��1�2 − �1�2�
. �24�

The physical solution exists only if the right-hand side is
positive, which translates into �1�2��1�2. Solving for the
critical temperature we get

Tc = �1.13	C�e−���1+�2�+
��1 − �2�2+4�1�2�/2��1�2−�1�2��.

�25�

The full expression for Tc, obtained from Eq. �22�, with
	C2�	C1 and under the same conditions I1�0 and I2�0, is
a bit more complicated

Tc = �1.13	C1�e−���1+�2+2I2�1�2�+
��1 − �2�2+4�1�2�1 + I2�1�2�1 + I2�2�2�/2��1�2�1+I2�1��1+I2�2�−�1�2��. �26�

As it turns out, however, once the retardation effect is re-
stored, all the reader needs to do to obtain a good approxi-
mation to Eq. �26� is to simply replace in Eq. �25� �1,2
→�1,2

� , where �1,2
� are given by

�1,2
� =

�1,2

1 + �1,2 log�	C2/	C1�
. �27�

Therefore, now �1�2 only has to be larger than �1
��2

� or, in
the original notation J�
U1

�U2
�, to make s� superconductiv-

ity possible. In a close proximity to a SDW �or CDW� insta-
bility, one could have 	C2�	C1 and thus the superconduc-
tivity could be generated by the Josephson interband
resonance even if one starts with J�
U1U2 at the bare level.
In a more traditional framework, such mechanism of dy-
namical screening is behind the conventional wisdom that
any weak attraction will cause superconductivity as long as it
is sufficiently retarded.39 Notice that in a similar vain, any
reduction in U1,2 arising from the interband phonon attrac-
tion would help superconductivity as well.

One of the consequences of Eq. �22� is that the overall
magnitudes of the hole and electron gaps ��1� and ��2� are
generically different, as soon as the c and d band parameters
are not the same. Several point-contact Andreev reflection
�PCAR� measurements,15,16 however, show a single gap. Ob-
viously, one explanation is that there are two gaps, but they
have similar magnitudes in this particular system and cannot
be resolved in a PCAR experiment. In contrast, the ARPES
experiments do in fact show two different gaps in some of
the other Fe-pnictide superconductors.18,19 Note that the
main role of different band parameters arises through their
different densities of states �DOSs�: the parameter which is
independent of doping for two-dimensional �2D� parabolic
bands. Naturally, the real hole and electron bands in Fe pnic-
tides are neither ideal parabolas nor identical to each other
�nor entirely 2D for that matter�. To study the effects of
different DOSs for the two bands we solve numerically Eq.
�22� �without the retardation effects� at zero temperature for

differences in DOS of the two bands of up to 10%. The result
is shown in Fig. 5 and we see that the hole and electron gaps
diverge away from one another rather slowly. This illustrates
the relative lack of sensitivity of the gap functions to differ-
ences in the band parameters, retroactively provides another
justification for our assuming that they are the same, and—
within the framework of the s�-wave state—can explain the
experiments that seemingly point to a single-gap supercon-
ductivity.

VI. DISCUSSION AND CONCLUSIONS

In this paper we investigated the dynamical properties of
spin fluctuations in superconductors with various forms of
the microscopic order parameter, both in the vicinity of and
within the itinerant SDW state. Our main emphasis was on
finding ways to distinguish different types of superconduct-
ing order by concentrating on the features in momentum
space, since one of the leading candidates, the extended
s�-wave superconductor, does not differ from an ordinary s
wave by the overall symmetry. We demonstrated by explicit
calculations that the momentum as well as the frequency
dependence of the spin fluctuation decay rate can be used to
distinguish among different states of a multiband multigap
superconducting system, even in the cases when the tempera-
ture dependence is similar; some of our results are summa-
rized in Table I. Among other applications, we expect our
findings to be particularly useful in the ongoing efforts to
establish the symmetry of the order parameter in the iron-
based high-temperature superconductors.

ACKNOWLEDGMENTS

We thank V. Cvetkovic, C. Broholm, W. Bao, J. P. Car-
botte, and T. Timusk for useful discussions. This work was
supported in part by the NSF under Grant No. DMR-
0531159 and by the DOE under Grant No. DE-FG02-
08ER46544.

SPIN FLUCTUATION DYNAMICS AND MULTIBAND… PHYSICAL REVIEW B 78, 184509 �2008�

184509-9



1 Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am.
Chem. Soc. 130, 3296 �2008�.

2 X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang,
Nature �London� 453, 761 �2008�.

3 G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J.
L. Luo, and N. L. Wang, Phys. Rev. Lett. 100, 247002 �2008�.

4 Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L.
Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys.
Lett. 83, 17002 �2008�.

5 H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Europhys.
Lett. 82, 17009 �2008�.

6 M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101,
107006 �2008�.

7 G. F. Chen, Z. Li, G. Li, W. Z. Hu, J. Dong, X. D. Zhang, P.
Zheng, N. L. Wang, and J. L. Luo, Chin. Phys. Lett. 25, 3403
�2008�.

8 A. J. Drew, Ch. Niedermayer, P. J. Baker, F. L. Pratt, S. J. Blun-
dell, T. Lancaster, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V.
K. Malik, A. Dubroka, M. Roessle, K. W. Kim, C. Baines, and
C. Bernhard, arXiv:0807.4876 �unpublished�.

9 H. Chen, Y. Ren, Y. Qui, Wei Bao, R. H. Liu, G. Wu, T. Wu, Y.
L. Xie, X. F. Lang, Q. Huang, and X. H. Chen, arXiv:0807.3950
�unpublished�.

10 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys.
Rev. Lett. 101, 057003 �2008�.

11 V. Cvetkovic and Z. Tesanovic, arXiv:0804.4678 �unpublished�.
12 F. Wang, Hui Zhai, Ying Ran, and Ashvin Vishwanath,

arXiv:0807.0498 �unpublished�.
13 A. V. Chubukov, D. Efremov, and I. Eremin, Phys. Rev. B 78,

134512 �2008�.
14 H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3,

552 �1959�.
15 T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L.

Chien, Nature �London� 453, 1224 �2008�.
16 P. Samuely, P. Szabo, Z. Pribulova, M. E. Tillman, S. Bud’ko,

and P. C. Canfield, arXiv:0806.1672, Supercond. Sci. Technol.
�to be published�.

17 K. Hashimoto, T. Shibauchi, T. Kato, K. Ikada, R. Okazaki, H.
Shishido, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto,
and Y. Matsuda, arXiv:0806.3149 �unpublished�.

18 H. Ding, P. Richard, K. Nakayama, T. Sugawara, T. Arakane, Y.
Sekida, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang,
X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Euro-
phys. Lett. 83, 47001 �2008�.

19 L. Wray, D. Qian, D. Hsieh, Y. Xia, L. Li, J. G. Checkelsky, A.
Pasupathy, K. K. Gomes, A. V. Fedorov, G. F. Chen, J. L. Luo,
A. Yazdani, N. P. Ong, N. L. Wang, and M. Z. Hasan,
arXiv:0808.2185 �unpublished�.

20 K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G.
Q. Zheng, Europhys. Lett. 83, 57001 �2008�.

21 T. A. Maier and D. J. Scalapino, arXiv:0805.0316 �unpublished�.
22 D. Parker, O. V. Dolgov, M. M. Korshunov, A. A. Golubov, and

I. I. Mazin, Phys. Rev. B 78, 134524 �2008�.

23 Meera M. Parish, Jiangping Hu, and B. Andrei Bernevig,
arXiv:0807.4572 �unpublished�.

24 C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 �2000�.
25 To keep our discussion at a manageable level, we neglect here

the possibility of more exotic order parameters, including those
that break time-reversal invariance, which can generally arise in
multiband systems; see D. F. Agterberg, V. Barzykin, and L. P.
Gorkov, Phys. Rev. B 60, 14868 �1999�.

26 P. Quebe, L. J. Terbüchte, and W. Jeitschko, J. Alloys Compd.
302, 70 �2000�.

27 F. Ma, Z.-Y. Lu, and T. Xiang, arXiv:0804.3370 �unpublished�.
28 S. Lebègue, Phys. Rev. B 75, 035110 �2007�.
29 Clarina de la Cruz, Q. Huang, J. W. Lynn, Jiying Li, W. Ratcliff

II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L.
Wang, and Pengcheng Dai, Nature �London� 453, 899 �2008�.

30 Serena Margadonna, Yasuhiro Takabayashi, Martin T. Mc-
Donald, Michela Brunelli, G. Wu, R. H. Liu, X. H. Chen, and
Kosmas Prassides, arXiv:0806.3962 �unpublished�.

31 Y. Qiu, Wei Bao, Q. Huang, T. Yildirim, J. Simmons, J. W. Lynn,
Y. C. Gasparovic, J. Li, M. Green, T. Wu, G. Wu, and X. H.
Chen, arXiv:0806.2195 �unpublished�.

32 D. Bhoi, P. Mandal, and P. Choudhury, arXiv:0807.3833 �unpub-
lished�.

33 Of course, the opening of the superconducting gap alters other
properties of spin fluctuations as well: their self-energy, velocity,
etc. However, as long as the superconducting gap is small in
comparison with the effective spin exchange energy—a reason-
able approximation within at least a portion of the Fe-pnictides
phase diagram—such changes are relatively minor and do not
have the qualitative character of those occurring in the damping
channel.

34 M. Tinkham, Introduction to Superconductivity �McGraw-Hill,
New York, 1996�; J. R. Schrieffer, Theory of Superconductivity
�Perseus, Reading, 1999�.

35 This is the appropriate coherence factor when discussing the spin
fluctuations. The fact that it has different behavior for different
order parameters has also been used in calculations of NMR
relaxation rates �Refs. 13, 22, and 23�.

36 S. H. Simon and P. A. Lee, Phys. Rev. Lett. 78, 1548 �1997�.
37 V. Cvetkovic and Z. Tesanovic, arXiv:0808.3742 �unpublished�.
38 M. Gruner, Density Waves in Solids �Addison-Wesley, Reading,

MA, 1994�.
39 The reader should be warned that these arguments are an over-

simplification. In real materials, the reliable computations of
such dynamical screening are far more demanding and involve
the so-called local-field corrections to the dielectric function; see
P. B. Littlewood, Phys. Rev. B 42, 10075 �1990�, and references
therein.

40 J. Yang, D. Huvonen, U. Nagel, T. Room, N. Ni, P. C. Canfield,
S. L. Budko, J. P. Carbotte, and T. Timusk, arXiv:0807.1040
�unpublished�.

41 J. Kondo, Prog. Theor. Phys. 29, 1 �1963�.

STANEV, KANG, AND TESANOVIC PHYSICAL REVIEW B 78, 184509 �2008�

184509-10


